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According to the Autism Society of America, autism is now considered to be an epidemic. The increase in the rate of autism
revealed by epidemiological studies and government reports implicates the importance of external or environmental factors
that may be changing. This article discusses the evidence for the case that some children with autism may become autistic
from neuronal cell death or brain damage sometime after birth as result of insult; and addresses the hypotheses that toxicity
and oxidative stress may be a cause of neuronal insult in autism. The article first describes the Purkinje cell loss found in
autism, Purkinje cell physiology and vulnerability, and the evidence for postnatal cell loss. Second, the article describes the
increased brain volume in autism and how it may be related to the Purkinje cell loss. Third, the evidence for toxicity and oxi-
dative stress is covered and the possible involvement of glutathione is discussed. Finally, the article discusses what may be
happening over the course of development and the multiple factors that may interplay and make these children more vul-
nerable to toxicity, oxidative stress, and neuronal insult.

Autism is a neurological disorder that limits a person’s ability to function normally. Behavioral
abnormalities, social limitations, sensory processing abnormalities, and impaired ability to commu-
nicate are the main issues in this multifaceted disorder (Cohen & Volkmar, 1997). According to the
Autism Society of America (ASA), autism or autism spectrum disorder (ASD) is now considered to be
an epidemic. As many as 1.5 million Americans – children and adults – are thought to have autism/
ASD today, and unfortunately, that number is increasing. Based on statistics from the U.S. Depart-
ment of Education (USDE) and other governmental agencies, autism/ASD is growing at a rate of
10–17% per year (USDE, 2003).

Studies from the 1980s estimated autism to occur in 1 in 1000 children (Bryson et al., 1988;
Sugiyama and Abe, 1989). However, a study in 1999 reported a prevalence rate in autism of 1 in
333 children (Baird et al., 2001); and another study in 2003 reported a prevalence rate in autism of
3.4 in 1000 children (Yeargin-Allsopp et al., 2003). The Center for Disease Control (CDC), as of
November, 2004, reports prevalence rates ranging from 2 to 6 per 1,000 children (CDC, 2004).
Reports from the California Department of Developmental Services also suggest that the rates in
autism are increasing (Chakrabarti and Fombonne, 2001; California DDS, 1998). The increase in
public awareness and broadening of the criteria may be possible contributing factors; however, the
substantial increase in the rate of autism revealed by epidemiological studies and government
reports implicates the importance of external or environmental factors that may be changing
(USDE, 2003; Chakrabarti and Fombonne, 2001; Palmer et al., 2006).

The cause of autism, to date, is not known. In addition, it is unknown whether the neurological
problems are primary in nature or if another system is malfunctioning and affecting the neurological
system. Biomedical studies in autism/ASD disclose a variety of abnormalities, not only in the neuro-
logical system (Courchesne, 1991, 1995; Kemper & Bauman, 1993), but also in the immune (Cohly
and Panja, 2005; Warren et al., 1990, 1992, 1995) and digestive systems (Horvath et al., 1998;
Furlano et al., 2001; Molloy and Manning-Courtney, 2003). Abnormal metabolic indicators have
been found, such as low plasma levels of inorganic sulfate and sulfur oxidation deficiencies (Waring
and Klovrza, 2000; Waring and O’Reilly, 1990; Alberti et al., 1999). There have also been studies
that suggest toxicity in this population, specifically phenolic precursors, including trimethylbenzene,
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ethylbenzene, xylene, toluene, and styrene (Edelson and Cantor, 1998), and various heavy metals,
such as mercury, lead, bismuth, cadmium, and arsenic (Lonsdale, 2002; Filipek et al., 1999;
Eppright et al., 1996; Holmes et al., 2003). Recently, decreased glutathione levels and increased
oxidative stress were also shown in children with autism (James et al., 2004).Twin studies find a
much higher concordance rate for monozygotic twins as compared to dizygotic twins, suggesting
genetic inheritance as a causative agent (Bailey et al., 1995). Although studies suggest strong genetic
influences, specific susceptibility genes still remain largely elusive (Trikalinos et al., 2006).

Many theories were postulated regarding the underlying cause of autism. For example, autism
was implicated to be related to the measles, mumps, and rubella vaccine (Wakefield et al., 1998,
2000; Wakefield, 2003); mercury in vaccines (Bernard et al., 2002; McGinnis, 2001); immune sys-
tem dysfunction (Cohly and Panja, 2005; Warren et al., 1990, 1992, 1995; Singh et al., 1993;
Weizman et al., 1982); fungal infection (Shaw et al., 1994; Shaw, 1996), toxicity (McFadden,
1996); metabolic abnormalities (Waring and Klovrza, 2000; Waring and O’Reilly, 1990; Alberti
et al., 1999); and “leaky gut syndrome”(Vantrappen and Geboes, 1993). Most recently, studies
have suggested that decreased glutathione levels and increased oxidative stress may play a role in
the pathology (James et al., 2004). Which of the many theories may be correct and/or how the var-
ious theories may fit together remains unclear. It is important to note that these theories are based
on small studies and much more research is needed.

The diversity of these findings and their variety of selection in different patients suggest that per-
sons with autism/ASD comprise a heterogeneous population in regard to etiology. They also suggest
that patients may respond to different sets of treatment (Kern et al., 2001, 2002). To date, treat-
ments are varied and somewhat unpromising. The two most beneficial treatments, as reported by
parents surveyed by the Autism Research Institute (ARI), are chelation therapy and a gluten and
casein free diet (ARI, 2006). No treatments, to date, are considered curative.

The onset of autism is also not clear. The onset of the abnormal growth and development
within the brain in autism is not known. Current thought by experts in autism, such as Bauman
et al. (1997), is that the time of onset of the neurological problems is prenatal, occurring prior to
30 weeks gestation. However, autism comprises a heterogeneous population in that parents report
either that their child was abnormal from birth, or that their child was developmentally normal until
sometime after birth, typically 15–24 months, at which time the child began to regress or deterio-
rate (Filipek et al., 1999; Davidovitch et al., 2000; Tuchman, 1996; Kern, 2003). Typically reported
is loss of verbal, nonverbal, and social abilities (Davidovitch et al., 2000; Kern et al., 2002; Goldberg
et al., 2003). For example, a study by Goldberg et al. (2003) found that children that lost verbal
skills did so at an average of 20.69 months; children that lost nonverbal skills did so at an average of
18.58 months; and children that lost both skills, lost verbal skills at an average of 21.2 months and
nonverbal skills at an average of 18.9 months. Information provided by parents of children who
were developmentally normal until a later onset does not fit with the current thought of the time of
neurological onset of autism as being prenatal in all cases. It is conceivable that some of these chil-
dren become autistic from neuronal cell death or brain damage sometime after birth as result of
insult (Rice and Barone, 2000; Makri et al., 2004).

This article discusses the evidence for the case that some children with autism may become autistic
from neuronal cell death or brain damage sometime after birth as result of insult; and addresses the
hypotheses that toxicity and oxidative stress may be a cause of neuronal insult in autism. The article first
describes the Purkinje cell loss found in autism, Purkinje cell physiology and vulnerability, and the evi-
dence for postnatal cell loss. Second, the article describes the increased brain volume in autism and
how it may be related to the Purkinje cell loss. Third, the evidence for toxicity and oxidative stress is
covered and the possible involvement of glutathione is discussed. Finally, the article discusses what may
be happening over the course of development and the multiple factors that may interplay and make
these children more vulnerable to toxicity, oxidative stress, and neuronal insult.

Purkinje Cell Loss in Autism
One of the most consistent neurological abnormalities found in persons with autism is marked

Purkinje cell loss in the cerebellum (as determined by histopathological post-mortem examination)
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and atrophy of the cerebellar folia (as determined by in vivo neuroimaging) (Courchesne, 1991,
1995; Kemper and Bauman, 1993; Ritvo et al., 1986; Bailey et al., 1998). According to the Ritvo
et al. (1986), the Purkinje cells in the vermis of the cerebellum were approximately 15 standard
deviations below the mean, and approximately 8 standard deviations below the mean bilaterally in
the cerebellar hemispheres in the subjects with autism, as compared to normal controls. Several
animal studies showed that Purkinje cell loss results from insult, and in some cases the Purkinje
cells are selectively vulnerable (Welsh et al., 2002; Kern, 2003). For example, Purkinje cells are
selectively vulnerable to: (1) ischemia (inadequate blood supply) (Welsh et al., 2002; Fonnum and
Lock, 2000); (2) hypoxia (inadequate oxygen supply) (Welsh et al., 2002; Cervos-Navarro and
Diemer, 1991); (3) excitotoxicity, such as seizures, metabolic insufficiencies (Fonnum and Lock,
2000; Butterworth, 1993; O’Hearn and Molliver, 1997; Brorson et al., 1995; Kang et al., 2002);
(4) G protein dysfunction (Reader and Senecal, 2001; Kish et al., 1993); (5) viral infections (Hornig
et al., 2001); (6) vitamin deficiencies, such as thiamine (Butterworth, 1993); (7) heavy metals, such
as mercury, lead, arsenic, cadmium, and bismuth (Ross et al., 1996; Sorensen et al., 2000; Kenntner
et al., 2001; Stoev et al., 2003; Piao et al., 2005; Sakamoto et al., 2002; Warfvinge, 2000); (8) tox-
ins, such as bilirubin, phenytoin, ethanol, alkaloids, toluene, and diptheria toxin (Crooks et al.,
2000; Riedel et al., 1990; Fonnum and Lock, 2000; O’Hearn and Molliver, 1997; McDonald et al.,
1998; Saavedra et al., 1996); (9) chronic malabsorption syndrome, such as celiac disease, inflam-
matory bowel disease (Bhatia et al., 1995; Tijssen et al., 2000; Hadjivassiliou et al., 2002); and (10)
oxidative stress (Heaton et al., 2000; Chen et al., 2003; Yamashita et al., 2000; Barlow et al.,
1999). Why the Purkinje cell may be selectively vulnerable is discussed in the next section.

Purkinje Cell Physiology and Selective Vulnerability
The basic nature of neurons in regard to location, function, and chemical makeup allows for a

hierarchy of neuronal vulnerability of selective neuronal populations. Evidence suggests that the
physiology of the Purkinje cell plays a role in its vulnerability. The Purkinje cell is an exceptionally
large (50–80um) inhibitory neuron in the cerebellum that receives extensive excitatory input from
both parallel fibers (from granule cells) and climbing fibers (from the inferior olivary nucleus) (Ghez,
1991). Parallel fibers make about 200,000 connections on each Purkinje cell and input from these
neurons trigger calcium influx (Sugimori and Llinas, 1990). Purkinje cells fire synchronously, form-
ing one of the most powerful connections in the nervous system (Sugimori and Llinas, 1990; Ghez,
1991; Welsh et al., 2002). The response of the Purkinje cell is a large action potential followed by a
high frequency of smaller action potentials (complex spikes) that are associated with a calcium
influx that is unparalleled in the nervous system (Sugimori and Llinas, 1990; Ghez, 1991). As a
result of the high level of excitatory amino acid synaptic connections and the response of the
Purkinje cell that is mediated by voltage-gated and receptor-gated calcium channels, the Purkinje
cell has an exceptionally high metabolic demand (Welsh et al., 2002). A high metabolic demand,
combined with constant input from the inferior olive and large amounts of calcium stores and
influx, makes the neuron exceptionally vulnerable to metabolic insufficiencies and excessive rises in
calcium (Altman and Bayer, 1997; O’Hearn and Molliver, 1997). Excessive rises in intracellular cal-
cium are associated with excitotoxicity and may produce cell death (Martin et al., 1998; Hoyal
et al., 1998). Brorson et al. (1995) suggested that the Purkinje cell may be more vulnerable to exci-
totoxicity because they have alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors that undergo less complete desensitization. The AMPA receptors (which are in the
glutamate receptor family), located at the synapses with the climbing and parallel fibers, are thought
to mediate the selective vulnerability of the Purkinje cell to excitotoxicity (Sarna and Hawkes,
2003). Excessive glutamatergic neuronal stimulation increases the production of reactive oxygen
species (ROS), which in turn induce oxidative stress, excitotoxicity, and neuronal insult (Savolainen
et al., 1998; Nakaso et al., 2000). Very large neurons like the Purkinje cell have been shown to
have differential expression of antioxidant proteins (Sarafian et al., 1999). Sarafian et al. (1999) sug-
gested the antioxidant differences may also contribute to the selective vulnerability of these cells. A
couple of studies found that the administration of antioxidants, such as vitamin E and isoindoline
nitroxide, can reduce Purkinje cell death from oxidative stress (Chen et al., 2003; Heaton et al.,
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2000). Evidence suggests there are interactions of excitatory neurotransmitters and xenobiotics in
excitotoxicity and oxidative stress (Savolainen et al., 1998). Toxic metal exposure increases oxida-
tive stress and glutamate excitotoxicity, and as mentioned, the Purkinje cells are known to be vul-
nerable to lead (Kang et al., 2004; Kenntner et al., 2001), cadmium (Stoev et al., 2003), mercury
(Sakamoto et al., 2002; Sorensen et al., 2000; Warfvinge, 2000), arsenic (Piao et al., 2005), and
bismuth (Liessens et al., 1978; Ross et al., 1996). Metal-induced oxidant stress can initiate a
cascade of events including excitotoxicity, increased cytosolic free calcium, and cell death (Olanow
and Arendash, 1994). It is apparent that multiple factors may contribute to the selective vulnerabil-
ity of the Purkinje cell. The interplay between toxic metals and oxidative stress will be discussed fur-
ther in a later section.

Evidence for Postnatal Cell Loss in Autism
Bauman et al. (1997) stated that the absence of gliosis found in their autopsy study suggests that

the abnormalities occurred during early development (prior to 30 weeks gestation). Gliosis is prolif-
eration of neuroglial tissue that follows neural damage (Vajda, 2002). Nervous system damage as a
result of insult, such as metabolic insufficiencies, epilepsy, brain injury, toxins, infarction, viral infection,
ischemia, or excitotoxicity, may lead to neuronal death; neuronal degeneration; apoptotic cell
death, injury, cell loss; and gliosis (Vajda, 2002). Absence of gliosis suggests that cell count abnor-
malities are not due to neural damage.

However, there is evidence of gliosis associated with Purkinje cell loss in the cerebellum of
some children with autism. An autopsy report by Bailey et al. (1998) found that the Purkinje cell
loss was sometimes accompanied by gliosis and an increase in glial fibrillary acidic protein (GFAP).
[GFAP is elevated in acute and chronic situations of nerve cell damage (Ahlsen et al., 1993).] Bailey
et al. (1998) stated that the patchy glial cell hyperplasia found in their study suggests the possibility
of postnatal loss of Purkinje cells. The authors also stated that some signs were suggestive of a devel-
opmental basis, yet other factors influencing neuronal cell survival also seemed to be important. In
addition, in a study by Ahlsen et al. (1993) that examined the levels of GFAP in the cerebrospinal
fluid of children with autism, GFAP was found to be three times higher than the level of the control
group. Ahlsen et al. (1993) stated that the results could implicate gliosis and unspecified brain dam-
age in children with autism. Recently, a study examined levels of GFAP in the frontal, parietal, and
cerebellar cortices using age-matched autistic and control post-mortem specimens. GFAP was sig-
nificantly elevated in all three brain areas (Laurence and Fatemi, 2005). The authors stated that the
elevated GFAP confirms microglial and astroglial activation in autism and indicates gliosis, reactive
injury, and perturbed neuronal migration processes.

Interestingly, Bauman and Kemper (1994) reported that Purkinje cells were enlarged in chil-
dren, whereas the cells were small and pale in adults. The authors suggested that the cellular
enlargement was a result of a compensatory mechanism. However, neuronal damage results in cell
swelling (inflammatory reactive edema) (Vajda, 2002). Kiefer et al. (1989) found that phenytoin,
which is toxic to the Purkinje cell, causes the Purkinje cell to swell.

Increased Brain Volume
Another consistent neurological abnormality found in persons with autism is increased brain

volume. Many studies found that the brain in autism is enlarged (Courchesne et al., 2001; Hardan
et al., 2001; Bailey et al., 1998; Aylward et al., 2002; Sears et al., 1999; Herbert et al., 2004; Piven
et al., 1995, 1996; Sparks et al., 2002; Lotspeich et al., 2004). For example, Aylward et al. (2002)
completed an MRI study of 67 non-mentally retarded children and adults with autism who were
matched to 83 healthy community volunteers. The children with autism (up to age 12) had brains
that were significantly larger than controls. However, the persons with autism older than age 12
had brain volumes that were not different from controls. Interestingly, the head circumference in
the persons with autism of all ages was increased, as compared to controls. The authors stated that
this was suggestive that adolescents and adults with autism had a larger brain as children; and that
while normal persons experienced a quantitative increase in brain size during the adolescent years,
the persons with autism experienced a quantitative decrease in brain size during the adolescent
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years. Aylward et al. (2002) called this apparent “normalization of the brain,” and suggested after
age 12 as the “cutoff.” However, the authors said that a larger sample would be needed to deter-
mine this aspect clearly, especially since other studies suggested an earlier time when the brain
stops increasing in size abnormally.

Evidence from an MRI study by Courchesne et al. (2001) suggests that children with autism
have a normal head circumference at birth (which is indicative of normal brain volume), however,
by 2–4 years of age the brain is enlarged. Courchesne and colleagues (2001) found that 90% of the
boys in the study had 18% more cerebral white matter, 39% more cerebellar white matter, and
12% more cortical gray matter by 2–3 years of age. Courchesne and colleagues (2001) stated that
there is an early overgrowth followed by later slowed growth.

Herbert et al. (2004) found an unexplained white matter enlargement in their imaging study
that suggests an ongoing postnatal process. The authors state that the process suggests a nonaxonal
component of white matter, possible myelin. Other have suggested that the volume increase is in
the gray matter (Lotspeich et al., 2004; Courchesne et al., 2003).

Relationship Between Brain Volume and Head Circumference
Several studies reported that children with autism have statistically significantly larger head cir-

cumferences than typically-developing children (Courchesne et al. 2001, 2003; Aylward et al.,
2002; Fidler et al., 2000; Fombonne, 1999; Deutsch and Joseph, 2003) beginning during the first
year of life (Courchesne et al., 2003). Research indicates that head circumference is indicative of
brain volume in children (Bartholomeusz et al., 2002; Endres and Cohen, 2001; Tramo et al.,
1998; Hamano et al., 1990; Herbert et al., 2004). There is some debate as to at what age this rela-
tionship is not as correlative. For example, Bartholomeusz et al. (2002) stated that head circumfer-
ence was an excellent predictor of brain volume in children 1.7 to 6 years of age, and only an
adequate predictor after age 6.

Heavy Metals, Purkinje Cell Loss, and Increased Brain Volume
One aspect that Purkinje cell loss and increased brain volume have in common is that they both

can be caused by environmental factors, specifically heavy metal toxicity (Ross et al., 1996;
Sorensen et al., 2000; Kenntner et al., 2001; Hossain et al., 2004; Stoev et al., 2003; Piao et al.,
2005). Heavy metals lodge in the brain, produce cellular degeneration, and decrease cellular func-
tion (Kenntner et al., 2001; Olson et al., 1984). A recent and important study conducted on rodents
shows that lead induces the brain to swell (Hossain et al., 2004). This finding was associated with a
2-fold increase in vascular endothelial growth factor (VEGF). VEGF induces endothelial migration
and proliferation, and vasogenic cerebral edema. It was also found that the cerebellum is preferen-
tially susceptible to lead (the Purkinje cell in located only in the cerebellum). The authors state that
this may be due to the delayed post maturation of the cerebellum as compared to the cerebrum
(susceptibility to lead diminishes with maturity). An older study by Sundstrom and Kalimo (1987)
also found the cerebellum was susceptible to lead, and interestingly, found the number of GFAP-
positive cell bodies was increased in the cerebellar gray matter in lead-exposed newborn rats.

Another important recent finding is that mice that are susceptible (autoimmune disease-sensi-
tive) and exposed to mercury after birth develop enlarged brains and autistic-like symptoms (Hornig
et al., 2004). Another study found that the ethylmercury-containing preservative thimerosal disrupted in
another growth factor, insulin-like growth factor 1 (IGF-1), and disruption in factor growth signaling
(Waly et al., 2004). The metal ions disrupted normal IGF-1 activity and methionine synthase activity.

Studies suggest that toxic metals in the brain alter permeability, fluid balance, growth factors,
and biochemical processes (Hornig et al., 2004; Quig, 1998; Hossain et al., 2004; Waly et al.,
2004). The two studies mentioned earlier, Courchesne et al. (2001) and Herbert et al. (2004),
stated that the enlargement of brain tissue in autism is suggestive of overgrowth. However, the pos-
sible role of altered growth factors, altered permeability, endothelial proliferation, or cerebral
edema in the enlargement or “overgrowth” of the neurons of the tissue has not been parceled out.
Bauman and Kemper (1994) found that neurons were enlarged in children with autism, which is
suggestive of edema.
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Evidence for Heavy Metal Toxicity
Examples of heavy metals include lead (Pb), mercury (Hg), cadmium (Cd), cobalt (Co), copper

(Cu), and nickel (Ni) (Lopez-Artiguez and Repetto, 1993). Metals are environmental contaminants
that are present in the environment ubiquitously; however, modern industry has brought about an
increase (Soares et al., 2003). For example, a report from the Centers for Disease Control published in
1991 reported that 4 million preschool children in the United States have raised lead levels (CDC, 1991).

Anecdotal reports, as well as some studies, indicated that many children with autism possess
abnormal/toxic levels of heavy metals (Holmes et al., 2003; Lonsdale, 2002; Filipek et al., 1999;
Eppright et al., 1996; Accardo et al., 1988; Wecker et al., 1985; Shearer et al., 1982). For example,
Filipek et al. (1999) found that 44% of autistic and psychotic children had blood lead concentra-
tions greater than two standard deviations above the mean. Both Wecker et al. (1985) and Shearer
et al. (1982) found lower levels of cadmium in the hair of children with autism/ASD. Lonsdale
(2002) found children with autism had greater concentrations of arsenic in their urine than healthy
controls. Typically reported are abnormal levels of mercury, lead, bismuth, cadmium, and arsenic
(Lonsdale, 2002; Filipek et al., 1999; Eppright et al., 1996; Holmes et al., 2003; Fido and Al-Saad,
2005; Wecker et al., 1985; Shearer et al., 1982. Sulfhydryl-reactive metals, in particular, are found
to be in high concentrations in autistic children (mercury, cadmium, lead, and arsenic are sulfhy-
dryl-reactive metals) (Lonsdale, 2002; Quig, 1998).

Two pivotal studies, Holmes et al. (2003) and Bradstreet et al. (2003), influenced our under-
standing of toxic metals in autism. The study conducted by Holmes et al. (2003) of 94 children with
autism who were gender- and age-matched to 45 controls, found that their first baby haircuts had
mercury levels that were statistically significantly less than controls. The children with autism that
were the most severe had the lowest levels and the children that were the least severe had the high-
est levels. The study also gathered information about the levels of Hg exposure (based on their fish
consumption, exposure to mercury through childhood vaccines, and the mothers’ amalgam fillings).
The children with autism had higher levels of exposure than controls. This study suggests that
children with autism may not be able to eliminate Hg and thus may accumulate it instead.

Bradstreet et al. (2003) found that when children with ASD and controls are treated with multi-
ple doses of 2, 3-dimercaptosuccinic acid (DMSA) (an FDA approved chelating agent), the children
with ASD excreted fives times as much mercury as controls. Evidence from the Holmes et al. (2003)
study and the Bradstreet et al. (2003) study suggest that children with autism may be poor detoxifi-
ers relative to normally developing children.

A recent study completed by Palmer et al. (2006) found that, in Texas, for every 1000 pounds
of mercury released into the environment, there was a 61% increase in the rate of autism. This
study was one of the first to show a correlation between environmentally released mercury and the
rate of autism. It is important to note that inhaled mercury is almost completely absorbed by the
lungs and crosses the placental and blood-brain barrier (Berlin et al., 1969; Yokel et al., 2006).

Further evidence for heavy metal toxicity is from the Autism Research Institute. The Autism
Research Institute collected data from over 22,300 parents of children with autism on the behav-
ioral effects of biomedical interventions. The survey includes a list of 45 medications, 23 non-drug
supplements or biomedical treatments, and 9 special diets. The parents were asked to rate the
treatment on a 6-point scale. Of these 77 choices, parents rated chelation therapy (or the removal
of heavy metals) as the highest. Seventy-six% of parents said that their child “got better” on this
treatment. The next most effective treatment was a gluten and casein free diet at 65% (ARI, 2006).

Heavy Metals and Oxidative Stress
There is a particularly negative correlation between glutathione (GSH) levels and oxidative

stress associated with toxic metal exposure. GSH is found in almost every cell of the body and is
responsible for the removal of toxic metals; GSH will be described in more detail in a later section.
Exposure to heavy metals exerts detrimental affects on glutathione levels.

Arsenic exposure decreases GSH levels and increases lipid peroxidation in rats and subsequent
damage results from oxidative stress. Interestingly, rats that are pretreated with GSH precursors
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prior to the exposure to arsenic, perform better in regards to maintaining GSH levels and reducing
lipid peroxidation (Osbaldo et al., 1995). Mercury and cadmium have high affinities for GSH. These
metals bind irreversibly with GSH, and then the conjugated metal-GSH molecule is excreted (Quig,
1998; Zalups and Lash, 1996). When the GSH antioxidant system is compromised, the metals
sequester in the brain (Quig, 1998).

Oxidative Stress and Lipid Peroxidation
Cells use nutrients and oxygen to produce energy. Reactive oxygen species (ROS) are a natural

byproduct of the normal metabolism of oxygen. ROS are unstable atoms and are harmful because
they possess an unpaired electron which will pair by “stealing” an electron. This produces disrup-
tion to other molecules and damage to cells (Gutman, 2002).

The relationship between lipid peroxidation and ROS is well established (Efe et al., 1999). Exces-
sive ROS results in lipid peroxidation in membranes and this, in turn, results in loss of membrane
integrity and fluidity which ultimately leads to cell death (Esterbauer et al., 1991). Neurons are partic-
ularly vulnerable to free radical attack. Excessive exposure to free radicals or an inadequate response
to free radicals induces neuronal cell death (Jesberger and Richardson, 1991). Maugeri et al. (2004)
found a negative correlation between free radical levels and cognitive ability in elderly persons.

Both increased lipid peroxidation (Bilici et al., 2001; Ozcan et al., 2004) and oxidative stress
(Khanzode et al., 2003) are damaging to cells, particularly cell membranes. Glutathione is the compo-
nent that protects against lipid peroxidation and oxidative stress (Lenzi et al., 1994; Shi et al., 1998).

A study by Lenzi and colleagues (1994) found that glutathione not only reduced lipid peroxida-
tion and oxidative stress (Roy et al., 2000), but also reversed some of the damage of the cell mem-
branes (Lenzi et al., 1994). Another more recent study showed that glutathione exerts
neuroprotective properties and reduces neuropathy (Casinu et al., 2002). A study by Smyth et al.
(1997) also found that raising glutathione levels improved concentration abilities in cancer patients.

As mentioned, Purkinje cells (the cells that are found to be reduced in children with autism) are
vulnerable to oxidative stress. Oxidative stress produces Purkinje cell death and reduction in num-
bers (Heaton et al., 2000; Chen et al., 2003; Yamashita et al., 2000; Barlow et al., 1999). Impor-
tantly, research has found that administration of an antioxidant protects Purkinje cell survival
against oxidative stress (Chen et al., 2003; Heaton et al., 2000).

Evidence for a Glutathione Deficiency and Oxidative Stress in Children with Autism
Five recent studies showed that oxidative stress and/or lipid peroxidation are increased in autism

(Yorbik et al., 2002; Chauhan et al., 2004; Zoroglu et al., 2004, James et al., 2004; Sogut et al., 2003).
Sogut and colleagues (2003) and Zoroglu and colleagues (2004), found increased oxidative stress and
enzymatic antioxidants in children with autism compared to gender- and age-matched normal con-
trols. Sogut and colleagues (2003) found children with autism had increased red blood cell nitric oxide
levels and increased glutathione peroxidase levels; Zoroglu and colleagues (2004) found increased red
blood cell nitric oxide levels and increased thiobarbituric acid-reactive substances levels. Chauhan and
colleagues (2004) found that lipid peroxidation was increased and antioxidant proteins were decreased
in children with autism. In addition, and most importantly, there was a correlation between the
decreased antioxidant proteins and the loss of previously acquired skills. Specifically, antioxidant
protein levels (serum ceruloplasmin and transferrin) were reduced most strongly in the children who
had lost previously acquired skills. Children with autism who had not regressed and the normal con-
trols had similar levels. This finding implies a possible role of oxidative stress in the development of clin-
ical symptoms in regressive autism. James et al. (2004) found lower total glutathione plasma levels
and higher concentrations of oxidized glutathione in children with autism as compared to normal con-
trols. The lower redox ratio of reduced glutathione to oxidized glutathione indicates increased oxida-
tive stress. James et al. (2004) also found that plasma cysteine levels were lower in children with autism
and, as mentioned, cysteine is the rate limiting precursor for glutathione. In the James et al. (2004)
study, 19 of the 20 children had loss of previously required skills. James et al. (2004) stated that the
increased vulnerability of oxidative stress (environment, intracellular, or both) and impaired methyla-
tion capacity may play a role in the development of clinical symptoms in regressive autism.
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Other evidence for a glutathione deficiency is in the pathology seen in autism. Low glutathione
levels may underlie many of the systemic abnormalities associated with autism. In autism, there is
evidence for: (1) oxidative stress and lipid peroxidation; (2) toxicity, such as phenolic compounds
(Edelson and Cantor, 1998) and toxic metals (Lonsdale, 2002; Filipek et al., 1999; Eppright et al.,
1996; Holmes et al., 2003); (3) immune dysfunction, such as impaired or altered immune response
and dysregulation of inflammatory cytokines (Cohly and Panja, 2005; Warren et al., 1990, 1992,
1995); and (4) impaired gastrointestinal integrity, such as epithelial pathology and increase gut per-
meability (D’Eufemia et al., 1996; Wakefield et al., 1998, 2000; Furlano et al., 2001; Horvath et al.
1999). GSH is important in each of these physiological processes. The following section describes
what GSH is and how GSH is involved in these physiological processes.

Glutathione Structure and Function
Glutathione (GSH), or 2-amino-5-{[2-[(carboxymethyl)amino]-1-(mercaptomethyl)-2-oxoet-

hyl]amino}-5-oxopentanoic acid, is a small protein made up of three amino acids: glycine, cys-
teine, and glutamic acid. Glutathione is a general term for glutathione sulhydryl, hence the
abbreviation GSH. GSH is a thiol, and thus it containes sulfur (Sen, 1997). The side-chain sulfhydryl
residue (-SH; sulfur and hydrogen) that is on the cysteine part of the molecule is responsible for
most of its physiological properties (Sen, 1997). [A side chain is a part of a molecule attached to a
core structure.] The sulfhydryl residue it is the critically active part of the molecule (Gutman, 2002).
Importantly, sulfhydryl-reactive metals (mercury, arsenic, lead, and cadmium) bind with high affin-
ity to sulfhydryl groups (Quig, 1998).

The main functions of GSH can be placed into three basic categories: (1) antioxidant, (2) detox-
ifier, and (3) immune system enhancer (Gutman, 2002; Bounous et al., 1993). GSH is called the
master antioxidant because it is responsible not only for the metabolism of hydroperoxides and the
direct scavenging of reactive oxygen species, it also is needed for the regeneration of other antioxi-
dants such as vitamins C and E (Sen, 1997; Baruchel et al., 1998; Gutman, 2002). GSH is important
in the reduction of oxidative stress and works by donating an electron to the free radical, neutraliz-
ing the free radical (Gutman, 2002). It is the principal protective factor in the cell. GSH is important
in detoxification of xenobiotics (chemical substances that are foreign to the biological system, such
as heavy metals). For example, Keith et al. (1997) examined the effectiveness of chelators in the
removal of mercury from the rabbit kidney. GSH was almost as effective as the most powerful che-
lators (2, 3-dimercaptosuccinic acid (DMSA) and 2, 3-Dimercaptopropane- 1 – sulfonate (DMPS).
At 3 hours, DMPS removed 95%, DMSA removed 87%, and GSH removed 75%. In addition, GSH
removed the mercury without the negative side effect of zinc removal exhibited by the other chela-
tors. GSH is imperative for the regulation, response, and maintenance of the immune system
(Bounous and Molsen, 2003). GSH modulates the effect of inflammatory cytokines (Ho and Dou-
glas, 1992). GSH is also important for maintaining gastrointestinal integrity and in the regulation of
cell proliferation (Sen, 1997). Please see Table 1 which summarizes the relationship between GSH
and the systemic abnormalities associated with autism.

 Negative Cycle Can Result From Diseases or Disorders
As mentioned earlier, deficiencies in glutathione may be attributed to toxic metal exposure that

increase the need for glutathione or inhibit glutathione formation (White et al., 1995). In addition,
infection, pollution, stress, and a poor diet also deplete GSH (Gutman, 2002). Unfortunately, as the
body becomes deleted in glutathione, the damage and insult that occurs consequently increase the
need for glutathione and a negative cycle results.

Factors That May Interplay
After a child is born, heavy metal exposure and exposure to xenobiotics in general may result in

accumulation if a child has limited or compromised detoxification ability. These levels may accu-
mulate and reach “critical mass” and result in oxidative stress, decompensation, and neurological
damage. This would result in cell loss and loss of previously acquired skills. A question that may be
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asked is why some children are more vulnerable to neurological insults than other children. It may
be that many factors are involved and how these factors combine is important.

First, age at time of insult is a factor. The impact of environmental compounds in the body is a
function of developmental age (Makri et al., 2004). Infant and fetal tissue appears to be less resis-
tant to some toxic effects than older children and adults (Graeter and Mortesen, 1996). For exam-
ple, a higher amount of lead is absorbed through the gastrointestinal tract by young children than
adults. In rats, for example, main route of elimination of methylmercury is by secreting the toxin
into bile. In neonatal rats, this ability to secrete mercury into bile develops between 2 and 4 weeks
of age and is correlated with the increasing ability of the developing liver to secrete glutathione into
bile. Prior to 2 and 4 weeks of age, they are more vulnerable to the mercury toxin (Ballatori and
Clarkson, 1982).

Genetic predisposition is an important factor in vulnerability to insult. One of the best examples of
this is Gulf War Syndrome. Some soldiers during the first Gulf War were exposed to neurotoxins and
the effects were extreme in some cases. Evidence from the work of Haley and colleagues (1999)
showed that one difference was in detoxification abilities of different soldiers related to enzyme activ-
ity, involving the paraoxonase/arylesterase 1 (PON1) gene. Another example is a study by Ghosh et al.
(2005) that found that even though everyone is susceptible to arsenic, some people have more
genetic susceptibility than others depending on the presence or absence of a gene called GSTM1.

Stress and other illnesses may play a role in the vulnerability to insult. For example, children
who are on antibiotics at the time of heavy metal exposure are thought to make the children more
susceptible to damage; Rowland et al. (1980) showed that oral antibiotics noticeably inhibit mer-
cury excretion to 1/10 of normal in rats. Stress on the body, such as infection, produces additional
metabolic demands that may result in increased vulnerability (Morton et al., 1991; Ulrich, 1997). A
combination of a genetic predisposition and a stressor (e.g., infection) may increase the impact of
insult. One example of this is the metabolic disorder glutaric aciduria, type I. Children with this
metabolic insufficiency (typically seen in the Amish) develop normally until some insult or stress
occurs, such as infection, fever, etc. During the time of stress, the underlying metabolic insuffi-
ciency cannot be compensated for, and the child begins to incur neurological damage as a result of

TABLE 1. The relationship between GSH function and the systemic abnormalities associated with autism

Glutathione Function Pathology Found in Autism

Responsible for the metabolism of 
hydroperoxides and the direct scav-
enging of ROS (Sen, 1997; 
Baruchel et al., 1998).

Increased lipid peroxidation (Chauhan et al., 2004)

Antioxidant; reduces oxidative stress 
(Bounous et al., 1993; James et al., 
2004)

Increased oxidative stress (James et al., 2004; Chauhan et al., 
2004; Zoroglu et al., 2004)

Detoxification of heavy metals (Sen, 
1997)

Abnormal heavy metal levels (Holmes et al., 2003; Lonsdale, 
2002; Filipek et al., 1999; Eppright et al., 1996; Accardo et al., 
1988)

Detoxification of phenolic 
compounds (Sen, 1997)

Abnormal phenolic compounds levels (Edelson and Cantor, 1998)

Detoxification of acetominophen 
(Sen, 1997)

Impaired acetominophen metabolism (Waring and O'Reilly, 1990)

Helps maintain gastrointestinal 
integrity (Sen, 1997)

Impaired gastrointestinal integrity (Wakefield et al., 1998, 2000; 
D'Eufemia et al. 1996; Horvath et al., 1998, 1999; Furlano 
et al., 2001; Kern et al., 2002; Molloy and Manning-Courtney, 
2003)

Essential for immune function and 
response (Sen, 1997); includes 
modulating the effect of inflamma-
tory cytokines (Ho and Douglas, 
1992).

Impaired immune function and response (Cohly and Panja, 2005; 
Weizman et al., 1982; Warren et al., 1990, 1992, 1995; 
Singh et al., 1993); including dysregualtion of pro-inflammatory 
cytokines (Cohly and Panja, 2005)
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toxic buildup at that point. The neurological damage manifests itself in mental retardation, cerebral
palsy, spastic paralysis, and/or encephalopathy (Morton et al., 1991; Ulrich, 1997).

Environment also plays an important role. For example, the study mentioned earlier by Palmer
and colleagues (2006) found that the more mercury in the air, the greater the incidence of autism.
It is known that children who live in older homes painted with lead-based paint are more likely to
be lead toxic (CDC, 1991).

Diet is another relevant factor. Kidd (2002) found that glutamine (a building block for GSH) is
low in some children with autism, especially in those with an aversion to meat and/or poultry. Thus,
diet may play a role in making children more vulnerable to insult and stress.

CONCLUSION

The diversity of the biomedical findings and their variety of selection in different persons with
autism suggest that they comprise a heterogeneous population in regard to etiology. The evidence
presented in this article suggests that some of these children may be experiencing neuronal cell
damage or death sometime after birth as result of insult. The evidence also suggests that these chil-
dren may be selectively vulnerable to the impact from external or environmental factors. Some chil-
dren with autism may be like the canary in the coal mine, exposing policy and/or environmental
issues that need to be addressed.
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